The Mean Field Theories of Magnetism and Turbulence
نویسندگان
چکیده
In the last few decades a series of experiments have revealed that turbulence is a cooperative and critical phenomenon showing a continuous phase change with the critical Reynolds number at its onset. However, the applications of phase transition models, such as the Mean Field Theory (MFT), the Heisenberg model, the XY model, etc. to turbulence, have not been realized so far. Now, in this article, a successful analogy to magnetism is reported, and it is shown that a Mean Field Theory of Turbulence (MFTT) can be built that reveals new results. In analogy to compressibility in fluids and susceptibility in magnetic materials, the vorticibility (the authors of this article propose this new name in analogy to response functions, derived and given names in other fields) of a turbulent flowing fluid is revealed, which is identical to the relative turbulence intensity. By analogy to magnetism, in a natural manner, the Curie Law of Turbulence was discovered. It is clear that the MFTT is a theory describing equilibrium flow systems, whereas for a long time it is known that turbulence is a highly non-equilibrium phenomenon. Nonetheless, as a starting point for the development of thermodynamic models of turbulence, the presented MFTT is very useful to gain physical insight, just as Kraichnan’s turbulent energy spectra of 2-D and 3-D turbulence are, which were developed with equilibrium Boltzmann-Gibbs thermodynamics and only recently have been generalized and adapted to non-equilibrium and intermittent turbulent flow fields.
منابع مشابه
Fast Diffusion of Magnetic Field in Turbulence and Origin of Cosmic Magnetism
Turbulence is believed to play important roles in the origin of cosmic magnetism. While it is well known that turbulence can efficiently amplify a uniform or spatially homogeneous seed magnetic field, it is not clear whether or not we can draw a similar conclusion for a localized seed magnetic field. The main uncertainty is the rate of magnetic field diffusion on scales larger than the outer sc...
متن کاملar X iv : a st ro - p h / 07 03 71 1 v 1 2 8 M ar 2 00 7 Solar Interior – Radial Structure , Rotation , Solar Activity Cycle
Some basic properties of the solar convection zone are considered and the use of helioseismology as an observational tool to determine its depth and internal angular velocity is discussed. Aspects of solar magnetism are described and explained in the framework of dynamo theory. The main focus is on mean field theories for the Sun's magnetic field and its differential rotation.
متن کاملFlow Field Characteristics of an Aerospike Nozzle Using Different Turbulence Models
To improve the calculation of the flow properties of an aerospike nozzle, different turbulence models were investigated in this study. The primary shape of the nozzle plug is determined through utilizing an approximate method. The flow field is, then, simulated using the Navier-Stokes equations for compressible flows. The commercial computational fluid dynamics code Fluent is used to simulate t...
متن کاملar X iv : 0 80 2 . 28 04 v 1 [ as tr o - ph ] 2 0 Fe b 20 08 Magnetizing the universe
The origin of cosmic magnetism is an issue of fundamental importance in astrophysics. We review here some of the ideas of how large scale magnetic fields in the universe, particularly in galaxies and galaxy clusters could arise. The popular paradigm involves the generation of a seed magnetic field followed by turbulent dynamo amplification of the seed field. We first outline various seed field ...
متن کاملAstrophysical Implications of Turbulent Reconnection: from cosmic rays to star formation
Turbulent reconnection allows fast magnetic reconnection of astrophysical magnetic fields. This entails numerous astrophysical implications and opens new ways to approach long standing problems. I briefly discuss a model of turbulent reconnection within which the stochasticity of 3D magnetic field enables rapid reconnection through both allowing multiple reconnection events to take place simult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017